April 19 (Tue), 2016 Day 3

• (04) ASPIC outline

Stock assessments (SA) using ASPIC

Why we need stock assessments?

To understand <u>the status of the stock</u> in order to manage the fisheries resources <u>safely</u> for sustainable utilization

> Fisheries resources is renewable We need manage well

> > What is renewable ?

How do we use stock assessments results

Simple example Catch (BET, Indian Ocean) in 2016 should not exceed the MSY level (99,000 tons)

We need the reference point (MSY, Fmsy..) by stock assessments for sustainable utilization

How many SA methods ? Many methods (about 10 types and more than 50 approaches)

Method	Data Requir	rem ents	Reference	M anagement Advice	Pros	Cons			
	Binbana	Fishery -	Points						
PSA	Q ualitative	Q ua litative	No	Q ualitative	Easy to use if LH param eters available	D ifficult to relate to current abundanc and fishing mortality.			
D em ographic M ode k/E ksticity Analysis	Age & grow th, Fecundity, Natural Mortality	Several fishery characteristics	No	Mostly qualitative (change of gear) and F	Easy to use if LH Parameters available. Can provide guidance on gear usage/ selectivity	M ust assume that LH parameters are correct, but uncertainties can be introduced. D ifficult to relate to curren abundances and fishing mortality.			
Catch free LH Based	M, growth curve parameters, and Age at full Maturity or Max Age	Se ectivity	Yes (F _{MSY})	F _{msy}	Easy to get LH parameters if available. Zhou et al 2011) provides equations that are relevant to species. Could run a meta-analysis and run as wellusing a Bayesian Hierarchical Model Approach. Provides a Target F.	Guide lines provided for Fishing Mortality but no specifics on current status. No idea what current B iom ass and Fare However some guide lines could be provided based on theoretical carrying capacity, current depibtion by ek, and whether current take are meeting on exceeding targets.			
Catch free CPUE Based	M , growth curve parameters, and Age at full M aturity or M ax Age & recruitm ent	Selectivity and CPUE Series	Yes (F _{MSY} & B _{MSY})	F _{msy} &B _{msy}	Easy to parameterize with LH data. Estimate recruitment F and see betivity to tune to the CPUE series. Provides target F, Yield levels and where we are with regards to these rates. Provides target B as we lland where we are	LH based assumptions could be m is bading. CPUE series may not be representative of abundance series if from a limited fleet and area. Catch at size should be estimated from the viewpoint of the operational patterns			
Catch Based SRA	r & K	Catch series	Yes (F _{MSY} & B _{MSY})	F _{MSY} &B _{MSY}	Set of data that currently exist (but may not be too good). Tried and tested approach in DES, Walters, etc. Easy to run, provides Yield targets and FMSY & BMSY	Uncertainty in catch series can give m is bading results. Based on assum ptions of depletion range in current years that may give m is badin results. May not be very accurate in terms of FMSY and BMSY			
Sunplus Production (Bayesian or Othenwise)	r&K	Catch series & CPUE series	Yes (F _{MSY} &B _{MSY})	F _{MSY} & B _{MSY}	Traditional approaches. U sed extensively in literature. Provides yield targets and FM SY and BM SY	Length of time-series and uncertainty catch series and CPUE series can be results. Models may have problem s converging to a solution if there is n contrasting inform ation.			
Integrated assessm ents	Recruitment, M by age, growth paramters, maturation schedule, fecundity, recruitment	Catch series, Length based sam ples, CPUE data (and or have tagging data), fishery selectivity	Yes (F _{MSY} &B _{MSY})	F _{MSY} & B _{MSY}	M ost robust approach. Incorporates all inform ation in a dynam ic model Provides most representative yield targets and FM SY and BM SY	Highly data dependent. Models can ha problem s converging. Learning curve steep.			

IOTC (2015)

Table

seems to be complicated and complex

But....

SA methods: 2 categories

[1] Qualitative (demography, PSA..) (parameters only) [2] Quantitative (catch, CPUE, Biological parameters) (2a) Snap shot (short term average situation)(FiSAT) → Partial reference point (no MSY) (2b) Traditional (PM, Age based) (2c) Catch model (data poor)(2d) Integrated approaches (SS3, Multifan-cl) → ALL reference points (MSY, Fmsy...)

Summary of catch discussion

Pacific → we will use FAO

we might use averages

 Indian Ocean → we will consider both FAO and IOTC

→ need to investigate causes of big different 1996-98 (LOT)

If we can not find the causes,

We need SA methods with ALL reference points

(2b) Traditional

(Production, Age based models) (2c) Catch model (data poor method) (2d) Integrated approaches (SS3, Multifan-cl)

We consider (2b) as a first step..

If we have only catch we will consider (2c) We will not consider (2d) : too complicated beyond our scope

Within (2a) Traditional SA: Two types

Catch and CPUE -> PM (production model)

Catch, CPUE and Biological parameters → Age/size based SA (VPA, SCAA, ASPM etc)

We attempt the simple PM first..

Why we choose ASPIC ?

Within PM: 2 types

Equilibrium (Pop increase=decrease) PM: Schaefer, Fox, P-T models

Non equilibrium (Pop increase ≠ decrease) ASPIC based Schaefer, Fox, P-T models → realistic and common among RFMOs

We will use ASPIC

A Stock Production Model Incorporating Covariates

Problems in Stock assessments

Not like fine scale (exact) sciences Unlike physics, chemistry, engineering type

But more fuzzy sciences Large Uncertainties (data + model) Uncertain results(MSY, Fmsy..) Precautionary approach MSY=30,000 tons (95%CI: 10,000-40,000 tons) We may choose 20,000 ton (2016 TAC)

What do we need for SA(PM)

What do we need for SA(ASPM)

ASPM(SCAA) : Intermediate assessment model not too simple(ASPIC)

not too complicated (MFCL, SS3, most complicate)

Later we will attempt

ASPM

using biological data

size, growth,

ASPIC

INPUT : Catch (global) and CPUE by gear CPUE (1 or more OK) OUTPUT MSY, F, r (intrinsic Pop growth rate), K (Carrying capacity) and q (catchability) **Population size** (NO S-R relation - critical points)

Introduction to 2 ASPIC software

ASPIC original software (Prager, 2004)
 (06) ASPIC manual

 ASPIC grid (parameter) search (menu driven software)
 (05) manual

Where are your software ? Software (109MB)

📙 (1) CPUE standardization | soft (2016) (50MB) |

📙 (2) ASPIC (original soft) (v 5.05) Prager (2004) (1.3MB)

(3) ASPIC grid search soft (2016) (49MB)

► 🧾 aspic_setup

📙 (4) Kobe plot ver 3 (Jan, 2015) (9MB)

What are the relation between 2 software ?

ASPIC original software (Prager, 2004)

This is the basic ASPIC program => We will input initial seeding values

ASPIC grid (parameter) search (menu driven software)

The original program can run only <u>one set of parameters</u> at once. This soft will search optimum parameters by grid search using all combination of parameters

Original program One run only at one time

You need to repeat until you find the optimum Parameters. You may find the parameters at local minimum (Wrong answer)

Grid search

This repeats runs for many combination of parameters at one time Thus most optimum parameters can be found (correct answer)

What is the local minimum?

We now start the original program

Basic ASPIC program

- INPUT file test.inp (example)
- Program

Command prompt

There are many steps to run ASPIC

 We will repeat a few times so that we can run ASPIC

 As explained, it take one year to get used to the program.. As for a few times of practice, it still difficult to learn. First you move to the command prompt mode in your folder

• How ?

Double click

Then you see the window like below

10	1.111.160/11			
1	📷 コマンド プロンプト			
-	Microsoft Wind	lows [Version 6.1.7601]		▲
1	Copyright (c)	2009 Microsoft Corporation.	All rights reserved.	
2				
1	C:¥Users¥TN4>			
1				
1				
1				
E				
ļ				
1				
1				
]				
2				
c				

Change directory type cd and make one space

First copy the directory in the folder where you have you data file

(2) ASPIC (original soft) (v 5.05) Prager (2004) (1.3MB)										
🕤 🕞 🖉 🚺 D:¥TN¥Neritic	c(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) AS	iPIC (original soft) (v 5.05	5) Prager (2004) (1.3MB)							
整理 👻 ライブラリに追加 👻	共有 👻 書き込む 新しいフォルダー									
🚖 お気に入り	名前 🔺	更新日時	種類	サイズ						
ConeDrive	💷 aspic	2005/05/17 5:50	アプリケーション	918 KB						
■ ダウンロード	🔁 aspic5_05(manual)	2011/06/23 14:56	Adobe Acrobat Doc	235 KB						
■ エスクトップ 「11」 最近表示 広場所	🔁 ASPIC5_05	2004/08/18 8:31	Adobe Acrobat Doc	130 KB						
20250100Cmm	📄 s14.inp	2014/01/24 10:23	INP ファイル	3 KB						
🍃 ライブラリ	📄 test.inp	2013/05/28 16:56	INP ファイル	5 KB						
imv iii ドキュメント III ピカチャ	אינעסר 🚾 📧	2006/11/02 21:54	ショートカット	2 KB						

Then paste

🚾 コマンド プロンプト

Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:¥Users¥TN4>cd C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥4 software (109MB)¥(2) ASPIC original soft) (v 5.05) Prager (2004) (1.3MB)_

Then return then type dr then you see files in your folder

🚾 コマンド プロン	プト						
Microsoft Wi Copyright (c	ndows [Version :) 2009 Microso	n 6.1.7601 oft Corpor] ation.	All rights	s reserve	ed.	
C:¥Users¥TN4 original sof	>cd C:¥TN¥Ner t) (v 5.05) P	tic(SEAFD rager (200	EC)¥코드 4) (1.3M	ニュアル¥4 s MB)	oftware	(109MB)¥(2	2) ASPIC (
C:¥TN¥Neriti v 5.05) Prag ドライブ C ボリューム	c(SEAFDEC)¥マ: ger (2004) (1.3 のボリューム シリアル番号は	ニュアカン4 SMB) dir ラベル(ま W : 5CE1-206:	softwan indows7 <u>-</u> 2 です	re (109MB)¥ _OS です	4(2) ASPI	C (origina	al soft) (
C:¥TN¥Nerit (v 5.05) Pra	ic(SEAFDEC)¥국 ager (2004) (1	ニュアル¥ 3MB)のデ	4 softwa ィレクト	are (109MB))¥(2) ASF	PIC (origin	nal soft)
2016/04/18 2016/04/18 2005/05/17 2011/06/23 2004/08/18 2006/11/02 2014/01/24 2013/05/28	23:34 <dir 23:34 <dir 05:50 14:56 08:31 21:54 10:23 16:56 6個のファ・</dir </dir 	939,220 240,313 132,431 1,659 2,656 4,963	 aspic.e aspic5_ ASPIC5_ Command s14.ing test.ing 1,3	exe _05(manual) _05.pdf d Prompt.lr o np 321,242 / (-).pdf hk ſト		

Now preparation of your input file

• You need the editor to edit your input file

• Use memo pad

First look at test.inp

Then you will see the ASPIC input program as below

itest.inp - メモ帳	
ファイル(F) 編集(E) 書式(O) 表	モテテ(V) ヘルプ(H)
IT KAWKAWA″	## Run type (FIT, BOT, or IRF)
OX YLD SSE	## See notes at end of this file ## Verbosity on screen (0-3); add 10 for SUM & PRN files ## Number of boststern trials /= 1000
20000 d-8	## Number of bootstrap trials, <- 1000 ## 0=no MC search, 1=search, 2=repeated srch; N trials ## Convergence crit for simplex
d-8 6 d-4 24	## Convergence crit. for restarts, N restarts ## Conv. crit. for F; N steps/yr for gen. model
d0 d0	## Maximum F when cond. on yield ## Stat weight for B1>K as residual (usually 0 or 1)
d0 0d0	## Number of fisheries (data series) ## Statistical weights for data series ## B1/K (starting guess, usually () to 1)
. 4d4 . 0d5	## MSY (starting guess) ## K (carrying capacity) (starting guess)
.00d-5 1 1 1 1	## q (starting guesses 1 per data series) ## Estimate flags (0 or 1) (B1/K,MSY,K,q1qn)
.0d4 2.0d4 .5d5 2.0d5	## Min and max constraints MSY ## Min and max constraints K
933285 2 MAMM'	## Kandom number seed (Targe Integer) ## Number of years of data in each series] ## Title for 1st series (<=40 chars)
C 950 -1 4845	## TILLE TOF ISC SELLES (X=40 CHars)
951 -1 1783 952 -1 1945	
953 -1 2072 954 -1 3206	

No change

FIT	## Run type (FIT, BOT, or IRF)
"KAWKAWA"	
FOX YLD SSE	## See notes at end of this file
2	## Verbosity on screen (0-3); add 10 for SUM & PRN files
500	## Number of bootstrap trials, <= 1000
0 20000	## 0=no MC search, 1=search, 2=repeated srch; N trials
1d-8	## Convergence crit. for simplex
3d-8 6	## Convergence crit. for restarts, N restarts
1d-4 24	## Conv. crit. for F; N steps/yr for gen. model
8d0	## Maximum F when cond. on yield
0d0	## Stat weight for B1>K as residual (usually 0 or 1)
1	## Number of fisheries (data series)
1d0	## Statistical weights for data series
1.0d0	## B1/K (starting guess, usually 0 to 1)
1.4d4	## MSY (starting guess)
1.0d5	## K (carrying capacity) (starting guess)
1.00d-5	## g (starting guesses 1 per data series)
0 1 1 1 1	## Estimate flags (0 or 1) (B1/K,MSY,K,q1qn)
1.0d4 2.0d4	## Min and max constraints MSY
0.5d5 2.0d5	<u>## Min and max constraints K</u>
3933285	<u>## Random number seed (large integer)</u>
62	## Number of years of data in each series]
<u>"Kam</u> "	## litle for 1st series (<=40 chars)
CC	
1950 -1	4845
1951 -1	1783
1952 -1	1945
1953 -]	2072
1954 -]	3206
1955 -1	4122

1.000	10.00	
1.0d0	##	B1/K (starting guess, usually 0 to 1)
1.4d4	##	MSY (starting guess)
1.0d5	##	K (carrying capacity) (starting guess)
1.00d-5	##	q (starting guesses 1 per data series)
01111	##	Estimate flags (0 or 1) (B1/K,MSY,K,q1qn)
1.0d4 2.0d4	##	Min and max constraints MSY
0.5d5 2.0d5	##	Min and max constraints K
3933285	##	Random number seed (large integer)
62	##	Number of years of data in each series]
"KAW"	##	Title for 1st series (<=40 chars)

Data (year, CPUE and catch) if CPUE is missing, then -1

How to run ASIPC ?

• Type aspic TOP.inp (in today's folder)

You will see the log of ASPIC run

🚾 コマンド プロンプト

	E ZUZZE					
Fittin	g logisti	c model to imp	rove starting	guesses		
R:0	It: 296	B1/K:1.2823	K:8.13E+02	MSY:3.83E+02	SSE:5.0956617E+00	
R:1	It: 124	B1/K:1.2823	K:8.13E+02	MSY:3.83E+02	SSE:5.0956617E+00	
R:2	I+: 149	B1/K:1 2823	K:8 13E+02	MSY:3 83E+02	SSE:5 0956617E+00	
B.3	I+• 120	B1/V·1 2822	12E+02	MSV+3 83E+03	SSE+5 0056617E+00	
N.0 D.4	IL. 100	D1/K-1.2020	K.0.10E.02	MOT.0.00E'02 MOV.0.00E.00	000.0000017000	
к:4	It: 120	B17K:1.2820	K:8.13E+UZ	MƏ1:3.83E+UZ	SSE:0.0006017E+00	
NOTE -				0.000 1/ ()	- 400,00	
NOTE:	Bounds ad	justed with bo	unds factor =	8.000, K factor	r = 480.00	
	_					
Fittin	g Fox mod	el				
R:0	It: 334	B1/K:1.0393	K:8.59E+02	MSY:4.06E+02	SSE:3.3878317E+00	
R:1	It: 132	B1/K:1.0393	K:8.59E+02	MSY:4.06E+02	SSE:3.3878317E+00	
R:2	It: 141	B1/K:1.0393	K:8.59E+02	MSY:4.06E+02	SSE:3.3878317E+00	
R·3	I+• 134	B1/K•1_0393	K•8 59E+02	MSY•4 06E+02	SSE:3 3878316E+00	
R•1	It: 104	D1/K-1.0000	1/•0 50E+02	MSV•/ 08E+02	SSE+2 2878217E+00	
11.4	11. 151	DI/K.1.0000	N.0.JUL/UZ	WO1.4.00L'02	33E-3-3070317E-00	
F I		L 00				
Elapse	α μευ τις	KS: DZ				
Elapse	d time: U	hours, V minu	tes, V seconds	S.		
uste						
NOIE:	ASPIC end	ed normally. I	he output file	e is test2.fit		
C:¥IN¥	Neritic(S	EAFDEC)¥マニュ	アル¥tiles to	r participants '	(not ready)(4 tiles)	¥(0
4) <u>AS</u> P	IC outlin	es¥ASPIC origi	nal program>			
						_7

Results are in top.fit

v minutes, seconas. u nours,

NOTE: ASPIC ended normally. The output file is top.fit

```
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥files for participants (not ready)(4 files)¥(0
4) ASPIC outlines¥ASPIC original program>
C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥files for participants (not ready)(4 files)¥(0
4) ASPIC outlines¥ASPIC original program>dir
 ドライブ C のボリューム ラベルは ₩indo<mark>ws7_09</mark> です
ボリューム シリアル番号は 5CE1-2062 です
```

C:¥TN¥Neritic(SEAFDEC)¥マニュアル¥files for participants (not ready)(4 files)¥(04) ASPIC outlines¥ASPIC original program のディレクトリ

To see results

Import to memo.pad

F	き込む 新しいフォルター			3==	•
ļ	名前 ▲	更新日時	種類	サイズ	
	💷 aspic	2005/05/17 5:50	アプリケーション	918 KB	
I	📄 top.fit	2016/04/19 6:20	FIT ファイル	21 KB	
I	TOP.inp	2015/10/01 8:40	INP ファイル	2 KB	
	🏧 コマンド プロンプト	2006/11/02 21:54	ショートカット	2 KB	
18					

To see and use results for your paper

• Import test2.fit to excel

i5	込む 新しいフォルター			3== 1	•
4	名前 🔺	更新日時	種類	サイズ	
L	💷 aspic	2005/05/17 5:50	アプリケーション	918 KB	
L	📄 top.fit	2016/04/19-6:20	FIT ファイル	21 KB	
L	TOP.inp	2015/10/01 8:40	INP ファイル	2 KB	
L	📷 コマンド プロンプト	2006/11/02 21:54	ショートカット	2 KB	

キネスト ファイル ウィザード - 1/3

?

You have output in excel

X	5-	⊘							top -	Excel						
771	(ルーホーム	挿入	ページレイア	ウト 数式	データ	校閲 君	夏示									
<mark>[</mark> [貼り作	N 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MS Pゴシック B <i>I <u>U</u> -</i>	• • • •	11 ▼ A [*] ▼ <u>A</u> ▼	▲ = =	≡ Ìॐ.∙ ≡ K≣ ¥≣	lefe 折り返し 目 セルを結	て全体を表示す 合して中央揃え	する 標準 え - いい - い	% * €.0	 .00 .00 .00 条件付き 書式 ▼ 	テーブルとして 書式設定・	セルの スタイル *		لب the second sec	∑ オート SL
クリッ:	ポード ゅ		フォント		G		配置		Es .	数値	G	スタイル		セル		
A1	A1 \cdot : $\times \checkmark f_x$ TOP															
	Α	В	С	D	Е	F	G	Н	Ι	J	К	L	М	N	0	Р
1	ТОР	Page	1													
2		Tuesday,	19	Apr	2016	at	6:20:53									
3	ASPIC		A	Surplus-Pr	Model	Including	Covariates	(Ver.	5.10)							
4		FIT	program	mode												
5	Author:	Michael	H.	Prager;	NOAA	Center	for	Coastal	Fisheries	and	Habitat	Research	LOGISTIC	model	mode	
6		101	Pivers	Island	Road;	Beaufort,	North	Carolina	28516	USA	YLD	conditionin	g			
7		Mike.Prage	SSE	optimizatio	n											
8																
9	Reference	Prager,	M.	H.	1994	A	suite	of	extensions	to	а	no ne quilibr	ASPIC	User's	Manual	is
10		surplus-pro	model.	Fishery	Bulletin	92:00:00	374-389.	gratis	from	the	author.					
11																
12	CONTROL	PARAMETE	(FROM	INPUT	FILE)	Input	file:	top.inp								
13																
14	Operation	of	ASPIC:	Fit	logistic	(Schaefer)	model	by	direct	optimizatio	n.					
15	Number	of	years	analyzed:	13	Number	of	bootstrap	trials:	0						
16	Number	of	data	series:	1	Bounds	on	MSY	(min,	max):	1.00E+02	3.80E+03				
17	Objective	function:	Least	squares	Bounds	on	К	(min,	max):	3.90E+03	9.00E+05					
10	D-1-45			Charless	4 005 00	K.A	0			a!=1=.		00000				